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Bi2Te3 Wafers Inspection Update
John Greenhall, Cristian Pantea, Eric Davis, Craig Chavez, Dipen Sinha, Alan 
Graham, Scott Grutzik, Joseph Dumont, Pat Reardon

Progress update: October 11, 2018



Bi2Te3 Wafers Inspection Update

Primary objective
• Develop a fast and efficient technique to detect

cracked wafers via combination of machine
learning, optics, and ultrasound

Bottom line
• Low measurement time (<3 min/wafer)
• Technique detects 100% of cracked wafers, and

most wafers with other damage types



Presentation outline
I. Wafer defects and critical flaw size 

analysis 

II. Optical measurements

III. Acoustic measurements
1. Acoustic resonance of wafers

2. Acoustic nonlinearities

IV. Statistical trial of production wafers

V. Damage classification 

VI. What’s the future?
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Wafer Defect types

Scratch

CrackChannel

Inclusion

A number of different defect types have been identified:

Primary objective

Chip



3D Models Determine Maximum Tensile Stress During Cool 
Down After TEPOX Epoxy Curing

Current best estimates of the maximum principal stress, 𝝈𝒄 𝟓0 MPa

Scott Grutzik (2017) Sandia National Laboratories

Temperature Principal Stress

Can we identify flaws that could grow to 
be cracks during processing or service?



Conservative estimate of Bi2Te3 wafer 
critical flaw size

Critical defect depth:

𝑎𝑐
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Stress intensity factor:
0.66 𝐾 0.82 𝑀𝑃𝑎 𝑚*

     
Geometry correction factor:
𝑌 1.211 0.8

Maximum principal stress:
𝜎 50 𝑀𝑃𝑎

𝑎𝑐 110 𝜇𝑚

𝑎𝑐 110 𝜇𝑚

**

* Range for N and P Bi2Te3 - W.Y. Lu, SNL Memo on ”Fracture Toughness of Ultra+ Materials”, August 7, 2017
** Scott Grutzik (2017) Sandia National Laboratories

* 



Sample 
name Origin Bead-

blasted? Type Face # of 
Defects

Defect 
#

Type of 
defect

x 
(um)

y 
(um)

z 
(um)

Microscopy 
decision

Acoustics 
decision

MI-03 Marlow 
Industries YES N-

type

1

13

1 micro-crack 6190 191 -57

Fail Fail

2 hole 2645 165 -84
3 micro-crack 6113 61 -101

2

4 hole 1452 265 -87
5 channel 1954 98 -43
6 hole 301 199 -65
7 hole 1551 203 -40
8 hole 208 117 -50
9 hole 265 161 -61

10 hole 144 110 -54
11 micro-crack 7500 85 -154
12 hole 1311 220 -61
13 micro-crack 6643 109 -111

Over 100 wafers inspected optically

Each defect is analyzed and documented (type, 

x, y, z dimensions, surface, volume etc.)

Optical measurement of wafer 
defects

Keyance VHX 6000



Summary of optical measurements

Microscopy allows us to gather 
information on individual wafers
The constitution of a library of defects 
is indispensable to better understand 
the materials characteristics. We are 
attempting to correlate it to the 
acoustics data.

Over 100 wafers inspected optically
Over 400 individual defects reported
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Acoustic crack detection in 
Bi2Te3 wafers

Goal: Detect wafers with cracks > 110 μm

Secondary goal: Detect wafers with channels > 110  μm          
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Acoustic Resonance Spectroscopy (ARS)
Wafer vibrational modes result in a peak in the mean surface displacement 
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Chladni Vibration Patterns of a Plate

Laser Vibrometer Patterns



Vibration Characteristics Comparison

Defect Free

With Cut



Effect of Crack Location
Crack excitation amplified when crack coincides with resonant mode maxima

We must excite multiple modes to ensure crack interrogation

We select a chirp from 8 kHz to 12 kHz to excite ~3 wafer modes
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Effect of Measurement Location
Measured signal dependent on measurement location

We measure a multi-point scanning pattern across the wafer surface
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Laser vibrometer

Experimental Setup

Foam

xy-stage

Ruby

Laser beam
Wafer

Band-pass 
filter

Oscilloscope

Function 
generatorRF Amplifier

Transducer

Motor controller

Measurement process controlled via a single PC



Experimental Setup (2)

Wafer Alignment jig

Transducer

Laser vibrometer

PC

RF amplifier Vibrometer controllerxy stage

Motor 
controller

Oscilloscope

Function 
generator

Filter



Damage detection metrics

• Acoustic nonlinearity: harmonics

• Acoustic nonlinearity: modulation

• Resonance mode consistency 

• Resonance mode amplitude



Acoustic Nonlinearity
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Contact acoustic nonlinearity: Cracks open/close resulting in nonlinearities
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Harmonics: 𝑀  
𝑌 𝑌

𝑌

Modulated sidebands: 𝑀  
𝑌 𝑌

max 𝑌

We input a low-frequency, sweeping “Pump” signal and high-frequency, fixed
“Probe” signal

This will result in nonlinear harmonics and modulated sidebands

Acoustic Nonlinearity (2)
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Response consistency
Frequency response of undamaged wafers is less sensitive to the location 
of the excitation/supports

We excite both sides (A, B) of the wafer, and compare the responses

A/B consistency is quantified as

High A/B consistency implies an undamaged wafer
Low A/B consistency implies a damaged wafer

Undamaged waferDamaged wafer

A/B consistency: 𝑀  = 
𝑌 , 𝑌
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Mean amplitude
Friction between crack faces absorbs energy and reduces the resonance amplitude

Mean resonance amplitude is quantified as

High mean amplitude implies an undamaged wafer
Low mean amplitude implies a damaged wafer
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Statistical trial of wafers 
(Optical measurement)

• We characterize wafers defects optically
• Wafers with defect depths >110 μm are characterized as “damaged” 

and defect depths <110 μm are characterized as “undamaged”

48
N-type wafers

15
Damaged 

(crack)

9
Damaged 

(chip/ 
channel)

24 
Undamaged

46
P-type wafers

2
Damaged 

(crack)

1
Damaged 

(chip/ 
channel)

43
Undamaged

Keyance VHX 6000



Statistical trial of wafers 
(Acoustic measurement)

Acoustic damage classification using:
• 2nd harmonic
• Modulated sidebands
• Mean amplitude
Inside box: undamaged
Outside box: damaged

Observations:
• 17/17 cracked wafers FAIL
• 6/10 chip/channel wafers FAIL
• 56/67 undamaged wafers PASS

Damage < 110 μm
Chip/channel > 110 μm
Crack > 110 μm

Optical damage



Statistical trial of wafers 
(Acoustic measurement)

Acoustic damage classification using:
• 2nd harmonic
• Modulated sidebands
• Mean amplitude
Inside box: undamaged
Outside box: damaged

Observations:
• 17/17 cracked wafers FAIL
• 6/10 chip/channel wafers FAIL
• 56/67 undamaged wafers PASS

Damage < 110 μm
Chip/channel > 110 μm
Crack > 110 μm

Optical damage



We characterize defects using three measurement techniques:

Comparison of damage 
measurement techniques

Keyance VHX 
6000

1) Acoustic resonance 2) Optical microscopy 3) X-ray computed
tomography



Why do some cracks result in higher nonlinear acoustic effects?
E.g. X-07 shows high-amp nonlinear features, but

X-19 shows low-amp nonlinear features

• X-19 cracks are wider and inhibit crack “breathing,” which inhibits acoustic nonlinearities
• Additionally, we observe subsurface cavities in X-07, which implies that there can be 

defects that are not observable optically
• Thus, some false positives may contain subsurface defects
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• We correctly classify cracks with                        0.0 % total error
• We correctly classify channels/chips with          4.3 % total error
• We correctly classify undamaged wafers with  11.7 % total error
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Machine learning damage classification: 
adaBoost

Undamaged wafer
Damaged wafer

y

Creates a strong classifier to identify damaged/undamaged wafers by combining 
multiple weak classifiers 
Example: Two damage metrics x and y

Result: Combining multiple low-accuracy thresholds yields high-accuracy 
classification
We can add weights to reduce false positives, while increasing false negatives

yy y

Weak classifier 1 
70 % accuracy 

Weak classifier 2 
66 % accuracy 

Combined classifier
94 % accuracy 



Machine learning damage classification:
Experimental results

adaBoost using 7 metrics
• Acoustic nonlinearity: harmonics for sides A & B
• Acoustic nonlinearity: modulation for sides A & B
• Resonance mode amplitude for sides A & B
• Resonance mode consistency  

Machine learning cross-validation
1) Randomly separate samples into a 

“training set” and a “testing set”

2)   Train the classifier using the “training set”

3) Test the classifier using the “training set” 
and “test set”

Training set

Testing set
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FN: Missed cracks
FN: Missed channels/chips
FP: Misidentified damage

*Cross-validation using 20 tests, each with a test set of 30 data points

FN: Missed cracks
FN: Missed channels/chips
FP: Misidentified damage



Summary

Accomplished goal: Demonstrated acoustic detection of all cracks 
and most chips/channels
Fast measurement time (<3 mins per wafer)
Combined acoustic/optical measurements enables classification of 
“damaged” wafers based on acoustic response
High measurement accuracy 
• 0.0 % missed cracks
• 4.3 % missed channels/chips (1 channel, 3 chips)
• 11.7 % “misidentified” damage

Increased accuracy and confidence with additional training samples
Machine learning enables high-accuracy/reliability and adaptability 
(with large data sets)



WTF
(What’s the Future?)

• Package device: Indus Instruments, Houston TX

• Improve wafer jig for increased loading speed and consistency

• Automate optical crack detection via computer vision

• Improve machine learning algorithm by, e.g. changing from 1D weak 

classifiers to hyper-plane weak classifiers

• Increase machine learning training set size to increase accuracy and 

confidence

– Online learning: new wafers are included in the data set during production

– Batch learning: provide us with a production batch of wafers to include ahead 

of production (~1 month per 100 wafers)
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Funding

Carry-over from FY18
• Improved, user-friendly wafer loading jig 
• Improved COTS acoustic source (Olympus V1011)
• Integrate data analysis in the acquisition software

Outstanding needs for FY19
• Inspection System Development (INDUS + SSS) – Green light/Red light

• ~6 months to delivery (from time when funds in hand)

Recommended actions
• Improved statistics, 100 more samples in the lab
• Automated optical crack detection
• Improved machine learning algorithm

Additional system
• Equipment cost (Acoustics)
• Equipment cost (Optics)
• Packaging (INDUS)

*Originally 1 - KCP, 1 – spare KCP, 1 - LANL

$250K

$265K

$50K
$200K
$200K

$170K
$85K
$25K



Thank you


